Pablo A. Iglesias and Brian P. Ingalls (eds)
- Published in print:
- 2009
- Published Online:
- August 2013
- ISBN:
- 9780262013345
- eISBN:
- 9780262258906
- Item type:
- book
- Publisher:
- The MIT Press
- DOI:
- 10.7551/mitpress/9780262013345.001.0001
- Subject:
- Biology, Biomathematics / Statistics and Data Analysis / Complexity Studies
Issues of regulation and control are central to the study of biological and biochemical systems. Thus it is not surprising that the tools of feedback control theory—engineering techniques developed ...
More
Issues of regulation and control are central to the study of biological and biochemical systems. Thus it is not surprising that the tools of feedback control theory—engineering techniques developed to design and analyze self-regulating systems—have proven useful in the study of these biological mechanisms. Such interdisciplinary work requires knowledge of the results, tools, and techniques of another discipline, as well as an understanding of the culture of an unfamiliar research community. This book attempts to bridge the gap between disciplines by presenting applications of systems and control theory to cell biology that range from surveys of established material to descriptions of new developments in the field. The first chapter offers a primer on concepts from dynamical systems and control theory, which allows the life scientist with no background in control theory to understand the concepts presented in the rest of the book. Following the introduction of ordinary differential equation-based modeling in the first chapter, the second and third chapters discuss alternative modeling frameworks. The remaining chapters sample a variety of applications, considering such topics as quantitative measures of dynamic behavior, modularity, stoichiometry, robust control techniques, and network identification.Less
Issues of regulation and control are central to the study of biological and biochemical systems. Thus it is not surprising that the tools of feedback control theory—engineering techniques developed to design and analyze self-regulating systems—have proven useful in the study of these biological mechanisms. Such interdisciplinary work requires knowledge of the results, tools, and techniques of another discipline, as well as an understanding of the culture of an unfamiliar research community. This book attempts to bridge the gap between disciplines by presenting applications of systems and control theory to cell biology that range from surveys of established material to descriptions of new developments in the field. The first chapter offers a primer on concepts from dynamical systems and control theory, which allows the life scientist with no background in control theory to understand the concepts presented in the rest of the book. Following the introduction of ordinary differential equation-based modeling in the first chapter, the second and third chapters discuss alternative modeling frameworks. The remaining chapters sample a variety of applications, considering such topics as quantitative measures of dynamic behavior, modularity, stoichiometry, robust control techniques, and network identification.
Ulrich Krohs and Peter Kroes (eds)
- Published in print:
- 2009
- Published Online:
- August 2013
- ISBN:
- 9780262113212
- eISBN:
- 9780262255271
- Item type:
- book
- Publisher:
- The MIT Press
- DOI:
- 10.7551/mitpress/9780262113212.001.0001
- Subject:
- Biology, Biomathematics / Statistics and Data Analysis / Complexity Studies
The notion of function is an integral part of thinking in both biology and technology; biological organisms and technical artifacts are both ascribed functionality. Yet the concept of function is ...
More
The notion of function is an integral part of thinking in both biology and technology; biological organisms and technical artifacts are both ascribed functionality. Yet the concept of function is notoriously obscure (with problematic issues regarding the normative and the descriptive nature of functions, for example) and demands philosophical clarification. So too the relationship between biological organisms and technical artifacts: although entities of one kind are often described in terms of the other—as in the machine analogy for biological organism or the evolutionary account of technological development—the parallels between the two break down at certain points. This book takes on both issues and examines the relationship between organisms and artifacts from the perspective of functionality. Believing that the concept of function is the root of an accurate understanding of biological organisms, technical artifacts, and the relation between the two, the chapters take an integrative approach, offering philosophical analyses that embrace both biological and technical fields of function ascription. They aim at a better understanding not only of the concept of function but also of the similarities and differences between organisms and artifacts as they relate to functionality. Their ontological, epistemological, and phenomenological comparisons will clarify problems that are central to the philosophies of both biology and technology.Less
The notion of function is an integral part of thinking in both biology and technology; biological organisms and technical artifacts are both ascribed functionality. Yet the concept of function is notoriously obscure (with problematic issues regarding the normative and the descriptive nature of functions, for example) and demands philosophical clarification. So too the relationship between biological organisms and technical artifacts: although entities of one kind are often described in terms of the other—as in the machine analogy for biological organism or the evolutionary account of technological development—the parallels between the two break down at certain points. This book takes on both issues and examines the relationship between organisms and artifacts from the perspective of functionality. Believing that the concept of function is the root of an accurate understanding of biological organisms, technical artifacts, and the relation between the two, the chapters take an integrative approach, offering philosophical analyses that embrace both biological and technical fields of function ascription. They aim at a better understanding not only of the concept of function but also of the similarities and differences between organisms and artifacts as they relate to functionality. Their ontological, epistemological, and phenomenological comparisons will clarify problems that are central to the philosophies of both biology and technology.
Michael Windle (ed.)
- Published in print:
- 2016
- Published Online:
- May 2017
- ISBN:
- 9780262034685
- eISBN:
- 9780262335522
- Item type:
- book
- Publisher:
- The MIT Press
- DOI:
- 10.7551/mitpress/9780262034685.001.0001
- Subject:
- Biology, Biomathematics / Statistics and Data Analysis / Complexity Studies
Findings from the Human Genome Project and from Genome-Wide Association (GWA) studies indicate that many diseases and traits manifest a more complex genomic pattern than previously assumed. These ...
More
Findings from the Human Genome Project and from Genome-Wide Association (GWA) studies indicate that many diseases and traits manifest a more complex genomic pattern than previously assumed. These findings, and advances in high-throughput sequencing, suggest that there are many sources of influence—genetic, epigenetic, and environmental. This volume investigates the role of the interactions of genes and environment (G × E) in diseases and traits (referred to by the contributors as complex phenotypes) including depression, diabetes, obesity, and substance use. The contributors first present different statistical approaches or strategies to address G × E and G × G interactions with high-throughput sequenced data, including two-stage procedures to identify G × E and G × G interactions, marker-set approaches to assessing interactions at the gene level, and the use of a partial-least square (PLS) approach. The contributors then turn to specific complex phenotypes, research designs, or combined methods that may advance the study of G × E interactions, considering such topics as randomized clinical trials in obesity research, longitudinal research designs and statistical models, and the development of polygenic scores to investigate G × E interactions. Contributors Fatima Umber Ahmed, Yin-Hsiu Chen, James Y. Dai, Caroline Y. Doyle, Zihuai He, Li Hsu, Shuo Jiao, Erin Loraine Kinnally, Yi-An Ko, Charles Kooperberg, Seunggeun Lee, Arnab Maity, Jeanne M. McCaffery, Bhramar Mukherjee, Sung Kyun Park, Duncan C. Thomas, Alexandre Todorov, Jung-Ying Tzeng, Tao Wang, Michael Windle, Min ZhangLess
Findings from the Human Genome Project and from Genome-Wide Association (GWA) studies indicate that many diseases and traits manifest a more complex genomic pattern than previously assumed. These findings, and advances in high-throughput sequencing, suggest that there are many sources of influence—genetic, epigenetic, and environmental. This volume investigates the role of the interactions of genes and environment (G × E) in diseases and traits (referred to by the contributors as complex phenotypes) including depression, diabetes, obesity, and substance use. The contributors first present different statistical approaches or strategies to address G × E and G × G interactions with high-throughput sequenced data, including two-stage procedures to identify G × E and G × G interactions, marker-set approaches to assessing interactions at the gene level, and the use of a partial-least square (PLS) approach. The contributors then turn to specific complex phenotypes, research designs, or combined methods that may advance the study of G × E interactions, considering such topics as randomized clinical trials in obesity research, longitudinal research designs and statistical models, and the development of polygenic scores to investigate G × E interactions. Contributors Fatima Umber Ahmed, Yin-Hsiu Chen, James Y. Dai, Caroline Y. Doyle, Zihuai He, Li Hsu, Shuo Jiao, Erin Loraine Kinnally, Yi-An Ko, Charles Kooperberg, Seunggeun Lee, Arnab Maity, Jeanne M. McCaffery, Bhramar Mukherjee, Sung Kyun Park, Duncan C. Thomas, Alexandre Todorov, Jung-Ying Tzeng, Tao Wang, Michael Windle, Min Zhang