- Title Pages
- About the Arne Ryde Foundation
- Preface
- Acknowledgments
- Glossary
- Data and Software
-
1 Introduction -
2 Discovery -
3 Background to Automatic Model Selection -
4 Empirical Modeling Illustrated -
5 Evaluating Model Selection -
6 The Theory of Reduction -
7 General-to-specific Modeling -
8 Selecting a Model in One Decision -
9 The 2-variable DGP -
10 Bias Correcting Selection Effects -
11 Comparisons of 1-cut Selection with Autometrics -
12 Impact of Diagnostic Tests -
13 Role of Encompassing -
14 Retaining a Theory Model During Selection -
15 Detecting Outliers and Breaks Using IIS -
16 Re-modeling UK Real Consumers' Expenditure -
17 . Comparisons of Autometrics with Other Approaches -
18. Model Selection in Underspecified Settings -
19 More Variables than Observations -
20 Impulse-indicator Saturation for Multiple Breaks -
21 Selecting Non-linear Models -
22 Testing Super Exogeneity -
23 Selecting Forecasting Models -
24 Epilogue - References
- Author Index
- Index
Impact of Diagnostic Tests
Impact of Diagnostic Tests
- Chapter:
- (p.151) 12 Impact of Diagnostic Tests
- Source:
- Empirical Model Discovery and Theory Evaluation
- Author(s):
David F. Hendry
- Publisher:
- The MIT Press
Chapter 7 considered the main mis-specification tests in Gets model selection using an information taxonomy of past, present and future data, theory and measurement information and rival models. The first seeks a homoskedastic innovation error {ϵt}; the second weak exogeneity of conditioning variables for the parameters of interest ϴ (say); the third, constant, invariant parameters, ϴ; the fourth theory consistent, identifiable structures; the fifth data-admissible formulations on accurate observations; and the sixth, encompassing rival models. We now address the specific mis-specification tests used in Autometrics to determine congruence, and consider their operating characteristics when applied to the DGP, the GUM and the finally selected model. We also examine the impact of their repeated use as diagnostic checks to ensure that reductions maintain congruence.
Keywords: Diagnostic tests, information taxonomy, repeated testing, selection effects
MIT Press Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs, and if you can't find the answer there, please contact us.
- Title Pages
- About the Arne Ryde Foundation
- Preface
- Acknowledgments
- Glossary
- Data and Software
-
1 Introduction -
2 Discovery -
3 Background to Automatic Model Selection -
4 Empirical Modeling Illustrated -
5 Evaluating Model Selection -
6 The Theory of Reduction -
7 General-to-specific Modeling -
8 Selecting a Model in One Decision -
9 The 2-variable DGP -
10 Bias Correcting Selection Effects -
11 Comparisons of 1-cut Selection with Autometrics -
12 Impact of Diagnostic Tests -
13 Role of Encompassing -
14 Retaining a Theory Model During Selection -
15 Detecting Outliers and Breaks Using IIS -
16 Re-modeling UK Real Consumers' Expenditure -
17 . Comparisons of Autometrics with Other Approaches -
18. Model Selection in Underspecified Settings -
19 More Variables than Observations -
20 Impulse-indicator Saturation for Multiple Breaks -
21 Selecting Non-linear Models -
22 Testing Super Exogeneity -
23 Selecting Forecasting Models -
24 Epilogue - References
- Author Index
- Index