- Title Pages
- About the Arne Ryde Foundation
- Preface
- Acknowledgments
- Glossary
- Data and Software
-
1 Introduction -
2 Discovery -
3 Background to Automatic Model Selection -
4 Empirical Modeling Illustrated -
5 Evaluating Model Selection -
6 The Theory of Reduction -
7 General-to-specific Modeling -
8 Selecting a Model in One Decision -
9 The 2-variable DGP -
10 Bias Correcting Selection Effects -
11 Comparisons of 1-cut Selection with Autometrics -
12 Impact of Diagnostic Tests -
13 Role of Encompassing -
14 Retaining a Theory Model During Selection -
15 Detecting Outliers and Breaks Using IIS -
16 Re-modeling UK Real Consumers' Expenditure -
17 . Comparisons of Autometrics with Other Approaches -
18. Model Selection in Underspecified Settings -
19 More Variables than Observations -
20 Impulse-indicator Saturation for Multiple Breaks -
21 Selecting Non-linear Models -
22 Testing Super Exogeneity -
23 Selecting Forecasting Models -
24 Epilogue - References
- Author Index
- Index
Evaluating Model Selection
Evaluating Model Selection
- Chapter:
- (p.71) 5 Evaluating Model Selection
- Source:
- Empirical Model Discovery and Theory Evaluation
- Author(s):
David F. Hendry
- Publisher:
- The MIT Press
Empirical models could be chosen according to many criteria, as this chapter discusses. Selection criteria can conflict, such as achieving empirical congruence may thwart theory consistency and vice versa, so we consider nine possible ways to judge the success of selection. Of these, four seem infeasible, two are widely used but seem suspect, so we focus on the remaining three practical criteria, namely a selection algorithm’s ability to recover the local data-generating process (LDGP) starting from the general unrestricted model as often as when starting from the LDGP itself; whether the operating characteristics of the algorithm match their desired properties; and whether selection can almost always find a well-specified, undominated model of the LDGP. Achieving all three jointly seems feasible.
Keywords: Model selection criteria, evaluating selection, search algorithm properties
MIT Press Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs, and if you can't find the answer there, please contact us.
- Title Pages
- About the Arne Ryde Foundation
- Preface
- Acknowledgments
- Glossary
- Data and Software
-
1 Introduction -
2 Discovery -
3 Background to Automatic Model Selection -
4 Empirical Modeling Illustrated -
5 Evaluating Model Selection -
6 The Theory of Reduction -
7 General-to-specific Modeling -
8 Selecting a Model in One Decision -
9 The 2-variable DGP -
10 Bias Correcting Selection Effects -
11 Comparisons of 1-cut Selection with Autometrics -
12 Impact of Diagnostic Tests -
13 Role of Encompassing -
14 Retaining a Theory Model During Selection -
15 Detecting Outliers and Breaks Using IIS -
16 Re-modeling UK Real Consumers' Expenditure -
17 . Comparisons of Autometrics with Other Approaches -
18. Model Selection in Underspecified Settings -
19 More Variables than Observations -
20 Impulse-indicator Saturation for Multiple Breaks -
21 Selecting Non-linear Models -
22 Testing Super Exogeneity -
23 Selecting Forecasting Models -
24 Epilogue - References
- Author Index
- Index