- Title Pages
- Series Foreword
- Preface
-
1 Introduction to Semi-Supervised Learning -
1 A Taxonomy for Semi-Supervised Learning Methods -
3 Semi-Supervised Text Classification Using EM -
4 Risks of Semi-Supervised Learning: How Unlabeled Data Can Degrade Performance of Generative Classifiers -
5 Probabilistic Semi-Supervised Clustering with Constraints -
6 Transductive Support Vector Machines -
7 Semi-Supervised Learning Using Semi-Definite Programming -
8 Gaussian Processes and the Null-Category Noise Model -
9 Entropy Regularization -
10 Data-Dependent Regularization -
11 Label Propagation and Quadratic Criterion -
12 The Geometric Basis of Semi-Supervised Learning -
13 Discrete Regularization -
14 Semi-Supervised Learning with Conditional Harmonic Mixing -
15 Graph Kernels by Spectral Transforms -
16 Spectral Methods for Dimensionality Reduction -
17 Modifying Distances -
18 Large-Scale Algorithms -
19 Semi-Supervised Protein Classification Using Cluster Kernels -
20 Prediction of Protein Function from Networks -
25 Analysis of Benchmarks -
22 An Augmented PAC Model for Semi-Supervised Learning -
23 Metric-Based Approaches for Semi-Supervised Regression and Classification -
24 Transductive Inference and Semi-Supervised Learning -
25 A Discussion of Semi-Supervised Learning and Transduction - References
- Notation and Symbols
- Contributors
- Index
A Taxonomy for Semi-Supervised Learning Methods
A Taxonomy for Semi-Supervised Learning Methods
- Chapter:
- (p.14) (p.15) 1 A Taxonomy for Semi-Supervised Learning Methods
- Source:
- Semi-Supervised Learning
- Author(s):
Seeger Matthias
- Publisher:
- The MIT Press
This chapter proposes a simple taxonomy of probabilistic graphical models for the semi-supervised learning (SSL) problem. It provides some broad classes of algorithms for each of the families and points to specific realizations in the literature. Finally, more detailed light is shed on the family of methods using input-dependent regularization or conditional prior distributions, and parallels to the co-training paradigm are shown. The SSL problem has recently attracted the machine learning community, mainly due to its significant importance in practical applications. The chapter then defines the problem and introduces the notation to be used. It is argued here that SSL is much more a practical than a theoretical problem. A useful SSL technique should be configurable to the specifics of the task in a similar way as Bayesian learning, through the choice of prior and model.
Keywords: probabilistic graphical models, SSL problem, input-dependent regularization, conditional prior distributions, practical applications, Bayesian learning
MIT Press Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs, and if you can't find the answer there, please contact us.
- Title Pages
- Series Foreword
- Preface
-
1 Introduction to Semi-Supervised Learning -
1 A Taxonomy for Semi-Supervised Learning Methods -
3 Semi-Supervised Text Classification Using EM -
4 Risks of Semi-Supervised Learning: How Unlabeled Data Can Degrade Performance of Generative Classifiers -
5 Probabilistic Semi-Supervised Clustering with Constraints -
6 Transductive Support Vector Machines -
7 Semi-Supervised Learning Using Semi-Definite Programming -
8 Gaussian Processes and the Null-Category Noise Model -
9 Entropy Regularization -
10 Data-Dependent Regularization -
11 Label Propagation and Quadratic Criterion -
12 The Geometric Basis of Semi-Supervised Learning -
13 Discrete Regularization -
14 Semi-Supervised Learning with Conditional Harmonic Mixing -
15 Graph Kernels by Spectral Transforms -
16 Spectral Methods for Dimensionality Reduction -
17 Modifying Distances -
18 Large-Scale Algorithms -
19 Semi-Supervised Protein Classification Using Cluster Kernels -
20 Prediction of Protein Function from Networks -
25 Analysis of Benchmarks -
22 An Augmented PAC Model for Semi-Supervised Learning -
23 Metric-Based Approaches for Semi-Supervised Regression and Classification -
24 Transductive Inference and Semi-Supervised Learning -
25 A Discussion of Semi-Supervised Learning and Transduction - References
- Notation and Symbols
- Contributors
- Index