Call for Pragmatic Computational Psychiatry
Call for Pragmatic Computational Psychiatry
Integrating Computational Approaches and Risk-Prediction Models and Disposing of Causality
Biological psychiatry is at an impasse. Despite several decades of intense research, few, if any, biological parameters have contributed to a significant improvement in the life of a psychiatric patient. It is argued that this impasse may be a consequence of an obsessive focus on mechanisms. Alternatively, a risk prediction framework provides a more pragmatic approach, because it aims to develop tests and measures which generate clinically useful information. Computational approaches may have an important role to play here. This chapter presents an example of a risk-prediction framework, which shows that computational approaches provide a significant predictive advantage. Future directions and challenges are highlighted.
Keywords: Strüngmann Forum Report, computational psychiatry, risk-prediction framework, computational perspective, prediction models
MIT Press Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs, and if you can't find the answer there, please contact us.